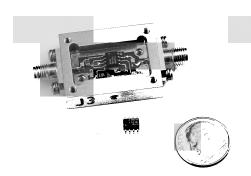
SCITEQ Components Group

12 GHz DIVIDE-BY-2	SEI-1202D/SEI-1202PG					
12 GHz DIVIDE-BY-4	SEI-1204D/SEI-1204PG					
12 GHz DIVIDE-BY-8	SEI-1208D/SEI-1208PG					
12 GHz DIVIDE-BY-32	SEI-1232D/SEI-1232PG					
STATIC PRESCALERS						

FEATURES

Static Dividers


Wide Frequency Range: 2 — 12 GHz
 Low Phase Noise Floor: <-140 dBc/Hz

• Low Power Dissipation

• **Single Supply**: +6V or -6V(chip only)

• Single-ended or Differential I/O

• **Temperature Range**: $T_A = -25$ °C to +85°C

DESCRIPTION

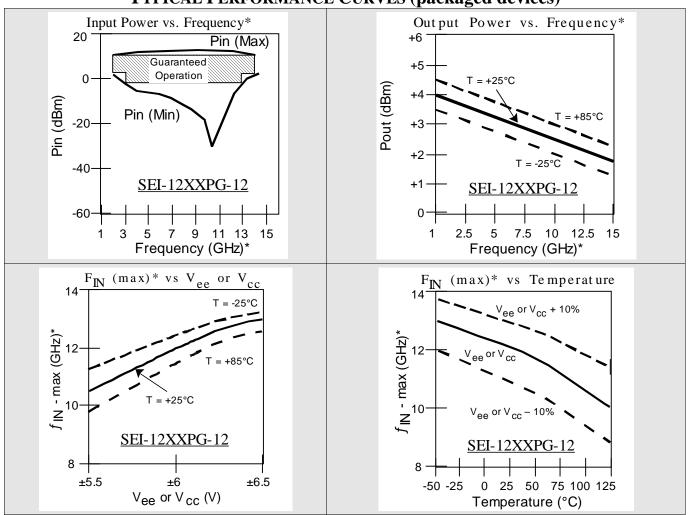
The SEI-12XX is a family of very high speed, low cost GaAs dividers, capable of operating up to 12 GHz. These devices are <u>static</u> dividers and therefore will divide over a wide frequency range up to 12 GHz. Input and output are either single-ended or differential, and nominal output power is +2 dBm (-10 dBm for the SEI-1202).

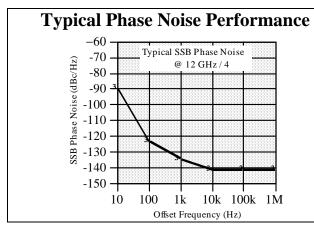
The packaged versions of the prescalers are available in an 8-lead plastic SOIC package. Three frequency ranges are now available (2–10 GHz, 2–12 GHz, 2–14 GHz*). Pin assignments and ordering information are shown on page 3. The original ceramic flatpack devices (SEI-12XXP) are only available as a special order on a limited basis until the current inventory is exhausted.

ABSOLUTE MAXIMUM RATINGS $(T_A = +25^{\circ}C)$

Symbols	Parameters	Units	Ratings				
V_{ee}	Supply Voltage	V	-8				
or			or				
V_{cc}			+8				
P _{in}	Input Power @ $V_{ee} = -6.0V$ or	dBm	+15				
	@ $V_{cc} = +6.0V$						
P _{max}	Maximum Power Dissipation	W	1.5				
T _c	Case Temperature	°C	-55 to +125				
T _{st}	Storage Temperature	°C	-65 to +175				

Note: Operation in excess of any one of these conditions may result in permanent damage

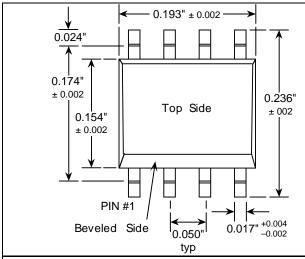

^{* 14} GHz packaged devices are only available in the SEI-1208PG and SEI-1232PG for a limited time.


Electrical Characteristics: $T_A = +25^{\circ}C$, $V_{cc} = +6V$ or $V_{ee} = -6V$ (chip only)

Part Number SEI-1202			SEI-1204			SEI-1208				SEI-1232							
		(÷2) (÷04)			(÷08)				(÷32)								
Symbols	Parameters and Test Conditions	Units	M in	Тур	Max	Units	Min	Тур	Max	Units	Min	Тур	M ax	Units	Min	Тур	Max
I _{ee} / I _{cc}	Supply Current	mA		85		mA		80		mA		85		mA		85	
f _{IN} (max)	Upper Limit of Input Frequency $P_{in} = +2 \text{ dBm}$	GHz	12 10	12		GHz	12 10	12		GHz	12 10	12		GHz	12 10	12	
f _{IN} (min)	Lower Limit of Input Frequency $P_{in} = +2 \text{ dBm}$	GHz			2	GHz			2	GHz			2	GHz			2
P _{in}	Input Power @ V_{cc} = +6.0V, f_{IN} = 2 GHz to Upper Freq f_{IN} = 3 GHz to Upper Freq – 1G	dBm dBm	+2 -2	+8 +8	+10 +10	dBm dBm	+2 -2	+8 +8	+10 +10	dBm dBm	+2 -2	+8 +8	+10 +10	dBm dBm	+2 -2	+8 +8	+10 +10
Pout	Output Power @ $V_{cc} = +6.0 \text{ V}$, $f_{IN} = \text{Upper Frequency}$	dBm	-10	-2		dBm	0	+4		dBm	0	+4		dBm	0	+4	
L	SSB Phase Noise @ 20 kHz offset from a 10 GHz carrier in a 1 Hz BW	dBc/ H _Z	-130	-140		dBc/ H _Z	-130	-140		dBc/ Hz	-130	-140		dBc/ Hz	-130	-140	

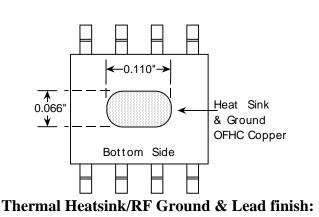
TYPICAL PERFORMANCE CURVES (packaged devices)

^{*} Graphs shown for 12 GHz upper frequency. For the 10 GHz & 14 GHz versions, scale each number on the frequency axis by 10/12 or 14/12, respectively.

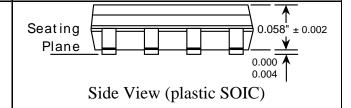


Pin Assignments

(for positive supply)

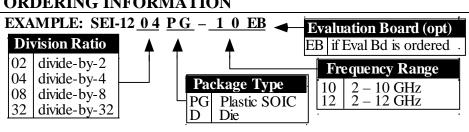

PIN	FUNCTION
1	RF _{out} (+)
2	V_{cc}
3	RF _{out} (-)
4	V_{cc}
5	RF _{in} (–)
6	V_{cc}
7	RF _{in} (+)
8	GND

OUTLINE DIMENSIONS (units in inches)



SOIC Notes:

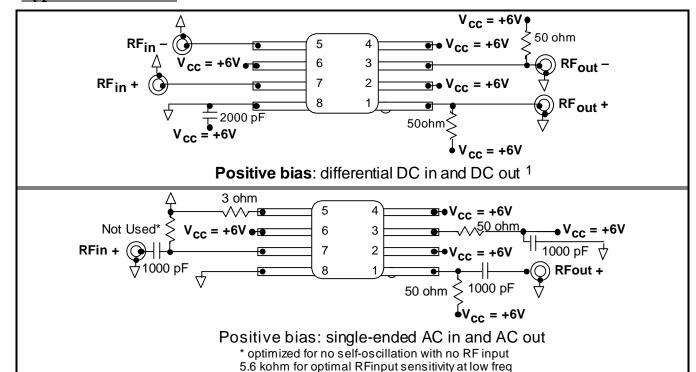
- 1. Devices must be baked @ +125°C for 12 hours to remove any accumulated moisture prior to soldering if the units have been exposed to a relative humidity >20% for more than 24 hours.
- 2. Maximum reflow solder temperature is +260°C for 10 seconds and no greater than 5°C/second thermal shock should be applied.
- **3.** Handle only at certified static-safe work station.



85 Pb/15 Sn

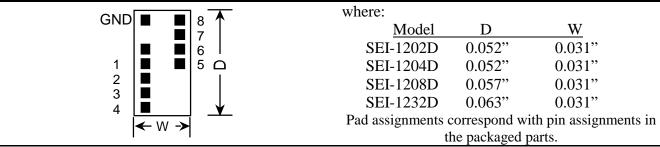
- **4.** Flash is 0.010 max
- 5. Lead Coplanarity: 0.004" max

ORDERING INFORMATION


PACKAGE MARKING

Note that the packaged parts are marked as 414XX with XX designating the division ratio as shown to the left. A green dot indicates a 10 GHz range. The "HK" indicates assembly in Hong Kong and the "24" or "34" are assembly codes.

There is a 5 piece minimum for packaged prescalers and a 10 piece minimum for die. Die orders are sold in multiplies of 10 only up to 100 pieces and then multiples of 25 above 100.


Typical Test Circuits

Notes:

- 1.) Can be used if DC levels Ω are Current Mode Level (CML) compatible and no input level is undefined. Differential inputs/outputs provides for Maximum Frequency
- 2.) Operation up to 8 GHz is possible on FR-4 type PWB material but above this range it may be necessary to use a better material. Duroid is recommended.
- 3.) The oval slug in the bottom plate is <u>case and die</u> ground and must be grounded for thermal and RF considerations.
- 4.) Bypass capacitor of 1000 pF should be used on all connections to V_{cc} or V_{ee}.

Mounting Information — SEI-12XXD (die)

Notes:

- 1. Ground Pad must be connected to circuit (or hybrid) ground in the positive bias configuration. In the negative bias configuration, it is connected to $V_{\rm ee}$.
- 2. If using epoxy to attach die to substrate, use an epoxy with low thermal resistance. The total thermal resistance of the die is \sim 3°C/W and the normal package thermal resistance is 9°C/W.
- 3. The pads are on 0.006" centers $(150 \,\mu\text{M})$ with 0.0125" $(32 \,\mu\text{M})$ free space between them. The pad itself measures 0.0046" $(118 \,\mu\text{M}) \times 0.0046$ " $(118 \,\mu\text{M})$.
- 4. The die has a gold passivation laver
- 5. All die are tested for operation >10 GHz.
- 6. All die are 100% inspected and tested and unfortunately, we are unable to accept any returns on die.

